

A Study into DNA Recombination Proteins and Novel Plasmid Recombination Sites from *Acinetobacter baumannii*

Sadia Khaleda Ahammed

BBiotech(Hons)(Newcastle)

A thesis submitted for the degree of Doctor of Philosophy (PhD), at the University of Newcastle (Australia)

July 2021

This research was supported by an Australian Government Research Training Program (RTP) Scholarship

..

Statement of Originality

I hereby certify that the work embodied in the thesis is my own work, conducted under normal supervision. The thesis contains no material which has been accepted, or is being examined, for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made. I give consent to the final version of my thesis being made available worldwide when deposited in the University's Digital Repository, subject to the provisions of the Copyright Act 1968 and any approved embargo.

Sadia Khaleda Ahammed

July 2021

Abstract

The discovery of multiple, inverted, *dif*-like recombination sites (*pdif*) flanking antibiotic resistance genes (*dif* modules), has prompted great interest in the area. Many of these recombination sites are located on plasmids originating from clinical isolates of the serious pathogen *Acinetobacter baumannii*. The study hypothesied inverted p*dif* sites on either side of a gene could function as a novel gene transfer and / or gene shuffling system via Xer site-specific recombination. Xer site-specific recombination is a process where the recombination proteins XerC and XerD bind to *dif* sites to catalyse two rounds of DNA strand cleavage, exchange and ligation. The recombination of *dif* sites on a plasmid can lead to the excision or inversion of the internal DNA, depending on the orientation of the recombination sites. Understanding this process could uncover mechanisms by which antibiotic resistance genes can mobilise and disseminate throughout bacterial populations.

The current study evaluated the binding interaction between two p*dif* sites and the *A*. *baumannii* recombinases XerC and XerD. A series of electrophoretic mobility shift assays (EMSA) demonstrated XerC and XerD cooperatively bind to the p*dif* sites, a crucial step preceding the catalysis of Xer site-specific recombination.

The study then predicted potential cross-species binding interactions between *A*. *baumannii* FtsK_Y (FtsK_{Y_AB}) and *E. coli* XerD (XerD_{EC}), an interaction necessary to activate catalysis of Xer site-specific recombination. A combination of predictive structural software, and hydrophobic and electrostatic protein profiles, revealed the possibility of a cross-species binding interaction. Subsequent *in vivo* recombination assays of the *A. baumannii* chromosome *dif* site, involving $FtsK_{Y_AB}$ and $XerD_{EC}$ resulted in weak levels of recombination, a likely indication $FtsK_{Y_AB}$ and $XerD_{EC}$ do interact to allow recombination to proceed.

Other *in vivo* recombination assays involved the inverted p*dif* sites, which were able to undergo recombination to generate inversion products. The recombination assay was performed within a host *E. coli* cell, which demonstrated the ability of *E. coli* Xer proteins to catalyse recombination events at variant *dif* sites. The ability of non-native Xer recombinases to recognise and catalyse variant *dif* sites could be prevalent in other bacterial species, which could aid the mobilisation of *dif* modules harbouring antibiotic resistance genes.

The study also investigated the *A. baumannii* DNA translocase FtsK (FtsK_{AB}), which could serve as a future therapeutic target. FtsK_{AB} was confirmed to be a strong DNA-dependent ATPase. However, the identification of an Fts<u>K</u> orientating polar sequence (KOPS) on the *A. baumannii* chromosome remains elusive. The study suggested several octomers that could potentially function as the KOPS motif on the *A. baumannii* chromosome. Yet, none of the listed octomers were as highly skewed or over-represented as the well-established KOPS motif GGGNAGGG on the *E. coli* chromosome. Nevertheless, it is likely the KOPS motif on the *A. baumannii* chromosome differs from that on the *E. coli* chromosome. The difference in motif sequence could indicate key FtsK proteins folds responsible for recognising the

iii

substrate DNA differs between the two species, which could be beneficial in developing new antibiotics specifically targeting FtsK within pathogenic strains of Acinetobacter.

Overall, the study demonstrated the novel *pdif* sites can be recognised and cooperatively bound by the *A. baumannii* Xer recombinases. Additionally, the *pdif* sites can undergo recombination within *E. coli*, which serves as an early indication that the novel *pdif* sites could function as a gene transfer and / or gene shuffling system, in support of the hypothesis.

Acknowledgements

This PhD project has been a truly humbling experience, and I am thankful to have been supported along the way by friends, family and colleagues, all of whom I dearly acknowledge.

I am thankful for the advice and guidance from my supervisors; Associate Professor Ian Grainge and Professor Peter Lewis, as well as past and present lab members from the UON Molecular Microbiology Group.

I am grateful for the support and friendship from Michael, Joey, Catherine and Taylor; Michael, your willingness to brainstorm ideas and provide technical assistance was invaluable; Joey, I will really miss our mornings of coffee and cards; Catherine, as a scientist and friend you are an absolute gem; and Taylor, you have been a brilliant lab mate throughout these years, always supportive and sympathetic of the challenges faced during our student lives.

Shema, you have endured the eccentricities of many biologists, and I am grateful you have withstood the eccentricities of me too. And to Beth, Saz and Allie, it was a lucky day when my boiler burst and I met three of the loveliest neighbours anyone could ask for, especially during a long wintery (Welsh) lockdown.

To Callum, near and far you have been a pillar of strength and comfort, in science and life. I cannot wait for the next great adventure, and I am thankful to be able to share these moments with you. Finally, to my family; Bhaiya, your hard work and achievements have been a constant inspiration in my life; and to Ammu and Abbu, you witnessed all the tears and rage as projects that were built up came crumbling down, but you held my hand through it all to see relief and delight emerge at the end of it. I am forever in your debt and whole heartedly dedicate this thesis to you.

Table of Contents

List of Figures	xv
List of Tables	xx
List of Abbreviations	xxii

Chap	ter One – Introduction1
1.1	Bacterial cell cycle, segregation and cell division2
1.2	FtsK, a double stranded DNA translocase7
	1.2.1 Early characterisation of FtsK7
	1.2.2 Sequence analysis of the <i>ftsK</i> gene9
	1.2.3 Protein analysis of the FtsK subdomains12
	1.2.4 Crystal structure of the <i>Escherichia coli</i> and <i>Pseudomonas aeruginosa</i> FtsK C-terminal domain
	1.2.5 Translocation of double stranded DNA21
	1.2.6 Motif recognition and polarity
1.3	Xer site-specific recombination system
1.4	The emergence and rise of antibiotic resistance
1.5	Pathogenesis and various antibiotic resistance mechanism of <i>Acinetobacter baumannii</i>
1.6	Chromosomal and plasmid mobility of antibiotic resistance genes in <i>Acinetobacter baumannii</i>
1.7	Characterised Xer site-specific recombination on plasmid substrates56
1.8	Project hypothesis and aims61

	<u>Aim</u> bauma	<u>1:</u> Evaluate the binding interaction between novel p <i>dif</i> sites and <i>A.</i> <i>mnii</i> XerC/D
	<u>Aim</u> bauma	<u>2:</u> Predict potential cross species binding interactions between <i>A. annii</i> FtsK and <i>E. coli</i> XerD during DNA recombination activation62
	<u>Aim 3</u> mode	B: Investigate <i>in vivo</i> recombination activity of Acinetobacter <i>dif</i> sites in the l species <i>E. coli</i>
	<u>Aim 4</u>	L: Characterise functional aspects of FtsK from A. baumannii63
	<u>Aim 5</u> therm	5: Determine the structure of the FtsK C-terminal domain from <i>Thermus</i> ophilus in complex with dsDNA64
Chap	ter Tw	0 – Materials and Methods65
2.1	Soluti	ons and bacterial growth media66
2.2	Bacter	rial strains and plasmids68
2.3	DNA	based techniques70
	2.3.1	Polymerase Chain Reactions (PCRs)70
		2.3.1.1 Oligonucleotides70
		2.3.1.2 PCR amplifications and conditions72
	2.3.2	DNA annealing75
	2.3.3	Genomic DNA extraction75
	2.3.4	Plasmid preparation75
	2.3.5	Restriction digest76
	2.3.6	DNA ligation
	2.3.7	DNA transformation (including preparation of chemically competent cells
	2.3.8	Agarose gel electrophoresis78
	2.3.9	DNA sequencing79

	2.3.10	Whole plasmid sequencing and <i>de</i> novo plasmid assembly	79
	2.3.11	Molecular cloning	80
2.4	Protei	n based techniques	83
	2.4.1	Protein overproduction	83
	2.4.2	Protein purification	84
		2.4.2.1 Cell lysis	84
		2.4.2.2 Heat purification	85
		2.4.2.3 Ni ²⁺ affinity chromatography	85
		2.4.2.4 Dialysis and protein concentration	86
		2.4.2.5 Heparin affinity chromatography	86
		2.4.2.6 Q column, anion exchange chromatography	87
		2.4.2.7 S column, cation exchange chromatography	88
	2.4.3	Size exclusion chromatography	88
	2.4.4	SDS-PAGE analysis	89
2.5	ATPa	se assay	90
2.6	Search	n for potential <i>A. baumannii</i> KOPS motifs	94
2.7	Protei	n alignments, and interaction predictions	95
2.8	Protei	n-DNA electrophoretic mobility shift assay (EMSA)	96
2.9	In viv	o recombination assays	97
2.10	Protei	n crystallisation trials	99

Chap	ter Three – Binding interaction between Acinetobacter ba	<i>umannii dif</i> sites and
Xer recombinases		
3.1	Introduction	

3.2	Comparison between E. coli and A. baumannii Xer recombinases	102
3.3	Comparison between <i>A. baumannii</i> chromosomal <i>dif</i> and p <i>dif</i> sites	108
3.4	Overproduction and purification of A. baumannii XerC and XerD	110
3.5	EMSA of <i>A. baumannii dif</i> sites and XerC/D	114
3.6	Discussion	118

Chapter Four – Prediction of Interaction between <i>Acinetobacter baumannii</i> FtsK _y and <i>Escherichia coli</i> XerD128		
4.1	Introduction	129
4.2	Comparison between <i>A. baumannii</i> and <i>E. coli</i> FtsK _y and XerD	130
4.3	Electrostatic and hydrophobic profiles of <i>A. baumannii</i> and <i>E. coli</i> FtsK _y a XerD	and 133
4.4	In silico docking of A. baumannii $FtsK_{\gamma}$ and XerD	139
4.5	Discussion	142

Chapt bauma	er Five – Investigation into recombination activity of <i>Acinetobacter annii dif</i> sites
5.1	Introduction
5.2	Construction <i>A. baumannii</i> $ftsK_y$ expression vector
5.3	In vivo recombination assays of <i>E. coli</i> chromosome <i>dif</i> sites in DS9041 (<i>E. coli</i> Δ FtsK)
5.4	<i>In vivo</i> recombination assays of <i>A. baumannii</i> chromosome <i>dif</i> sites in DS9041 (<i>E. coli</i> Δ FtsK)
5.5	<i>In vivo</i> recombination assays of <i>E. coli</i> and <i>A. baumannii</i> chromosome <i>dif</i> sites in DH5 α D- and DH5 α cells
5.6	pDIF_INV construction with novel A. baumannii pdif sites

5.7	In vivo recombination assays of novel A. baumannii pdif sites in DH5aD-	and
	DH5 α cells	165
58	Discussion	169

6.1	Introduction	.176
6.2	Identification of KOPS-like motifs	.176
6.3	Overproduction and purification of <i>A. baumannii</i> FtsKc	.182
6.4	ATP hydrolysis activity of <i>A. baumannii</i> FtsKc	.185
6.5	Discussion	. 189

Chapter Seven - Crystallography Trials of Thermus thermophilus FtsK 7.1 7.2 Construction of *T. thermophilus* FtsK recombinants......196 7.3 Construction of *T. thermophilus* FtsK recombinants......199 Overproduction of pFtsK_{αβ}_TT and pFtsK_γ_TT and cell lysis......199 7.3.1 7.3.2 7.3.3 Ni²⁺ affinity chromatography of FtsK_{αβ} and FtsK_γ201 7.3.4 7.4 Size exclusion chromatography of FtsK $_{\alpha\beta}$ under varying conditions206 ATP hydrolysis activity of *T. thermophilus* FtsK_{αβ}212 7.57.6 7.7

Chapt	er Eight – General Discussion and Conclusion225
8.1	The clinical significance of <i>A. baumannii</i> in the current health crisis226
8.2	Identification and activity of novel <i>dif</i> modules on <i>A. baumannii</i> plasmids228
8.3	Utilisation of novel <i>A. baumannii</i> pdif sites as a molecular tool231
8.4	FtsK as a potential drug target in pathogenic <i>A. baumannii</i> strains234
8.5	The future of structural biology in regard to predictive software, X-ray crystallography and cryo-EM
8.6	Conclusion

eferences

Appendices
Appendix I – Commercial crystallisation precipitant solution conditions
Appendix II – Acinetobacter baumannii XerC protein parameters
Appendix III – Acinetobacter baumannii XerD protein parameters
Appendix IV – ClusPro Model Scores of <i>A. baumannii</i> FtsKy and <i>E. coli</i> XerD273
Appendix V – ClusPro Predictive Models of <i>E. coli</i> FtsKy and <i>E. coli</i> XerD274
Appendix VI – ClusPro Predictive Model Scores of <i>E. coli</i> FtsKy and <i>E. coli</i> XerD 275
Appendix VII – ClusPro Predictive Models of <i>A. thaliana</i> Rubisco and FtsKy and <i>E. coli</i> XerD
Appendix VIII – ClusPro Predictive Model Scores of <i>A. thaliana</i> Rubisco and FtsKy and <i>E. coli</i> XerD
Appendix IX – $FtsK_y$ polypeptide sequence comparison, with contacts to XerD278
Appendix X – Fast quality control assessment of Illumina sequencing pSI-56 paired end reads
Appendix XI – Chromosome <i>dif</i> Site Comparison

Appendix XII – Acinetobacter baumannii Chromosome GC Skew Plot	284
Appendix XIII – Acinetobacter baumannii FtsKc protein parameters	285
Appendix XIV – Global protein sequence alignment between <i>E. coli</i> FtsKc ar <i>thermopilus</i> FtsKc	nd <i>T.</i> 286
Appendix XV – pFtsK _{αβ} _TT map	287
Appendix XVI – pFtsK _Y _TT map	288
Appendix XVII – <i>Thermus thermophilus</i> FtsK _{αβ} protein parameters	289
Appendix XVIII – Thermus thermophilus FtsKy protein parameters	290

List of Figures

Figure 1.1	Chromosomal replication, segregation and cell division, based on
	the model organism <i>E. coli</i>
Figure 1.2	Divisome assembly, based on the model organism <i>E. coli</i>
Figure 1.3	Crystal structure of the FtsK C-terminal subdomains, α , β and γ
	from <i>E. coli</i> and <i>P. aeruginosa</i> 16
Figure 1.4	Selected key motifs and residues that characterize AAA+
	(ATPases associated with various cellular activities) protein
	structures17
Figure 1.5	FtsKc crystal structures from P. aeruginosa used to develop the
	rotary-inchworm translocation model22
Figure 1.6	Schematic of DNA translocation by the $\alpha\beta$ motor domain within
	an FtsKc monomer23
Figure 1.7	Rotary inchworm model for DNA translocation, as observed
	from the base of the hexameric $\alpha\beta$ motor domain25
Figure 1.8	Schematic diagram of FtsK trimers26
Figure 1.9	Escort model for the translocation of mRNA by Rho29
Figure 1.10	Partial escort model for the translocation of dsDNA by the $\alpha\beta$
	motor domain of FtsKc
Figure 1.11	Substrate DNA within the FtsKc hexamer is required to realign
	with each subunit during DNA translocation
Figure 1.12	Structural models and schematic diagram of the P. aeruginosa
	FtsK _{αβ} -DNA complex35
Figure 1.13	Overview of the E. coli Xer-site specific recombination system on
	a chromosome substrate41

Figure 1.14	Crystal structure of the residues involved in the FtsK _y -XerD interaction
Figure 1.15	Linearised schematic of pS30-1 from <i>A. baumannii</i> clinical isolate (Global Isolate 2, SGH0823)
Figure 1.16	Proteins and DNA sequences involved in Xer site-specific recombination on chromosome and plasmid substrates
Figure 1.17	Plasmid evolution involving pECL18 and pHS-260
Figure 2.1	Construction of recombination assay reporter plasmid, by substituting native <i>dif</i> sites within pSI-56 with novel <i>A. baumannii</i> p <i>dif</i> sites
Figure 3.1	Global Protein Sequence Alignment between <i>E. coli</i> (EC) XerC and <i>A. baumannii</i> (AB) XerC
Figure 3.2	Global Protein Sequence Alignment between <i>E. coli</i> (EC) XerD and <i>A. baumannii</i> (AB) XerD103
Figure 3.3	Predicted XerC models from (A) E. coli and (B) A. baumannii105
Figure 3.4	Predicted XerD models from (A) E. coli and (B) A. baumannii105
Figure 3.5	Overproduction of XerC _{AB} (~37 kDa) and XerD _{AB} (~36 kDa) in B834 Δ XerD cells
Figure 3.6	XerCAB Purification by Ni ²⁺ Affinity Chromatography112
Figure 3.7	XerD _{AB} Purification by Ni ²⁺ Affinity Chromatography112
Figure 3.8	XerC _{AB} binding to <i>A. baumannii</i> chromosome <i>dif</i> , pS30-1 <i>dif</i> (L) and pS30-1 <i>dif</i> (R) recombination sites
Figure 3.9	XerD _{AB} binding to <i>A. baumannii</i> chromosome <i>dif</i> , pS30-1 <i>dif</i> (L) and pS30-1 <i>dif</i> (R) recombination sites

Figure 3.10	XerCAB and XerDAB binding to pS30-1 <i>dif</i> (L) and pS30-1 <i>dif</i> (R)
	recombination sites
Figure 3.11	Schematic of pS30-1 fragment with <i>dif</i> (L) and <i>dif</i> (R) regions.118
Figure 3.12	Variability of nucleotides between <i>dif</i> sequences from proteobacterial species
Figure 4.1	Global protein sequence alignment between <i>E. coli</i> (EC) FtsK _y and <i>A. baumannii</i> (AB) FtsK _y
Figure 4.2	Global protein sequence alignment between <i>E. coli</i> (EC) XerD and <i>A. baumannii</i> (AB) XerD
Figure 4.3	Electrostatic profiles of <i>E. coli</i> FtsK _y (A1 and A2) and <i>E. coli</i> XerD (B1 and B2)
Figure 4.4	Hydrophobic profiles of <i>E. coli</i> FtsK _y (A1 and A2) and <i>E. coli</i> XerD (B1 and B2)
Figure 4.5	Electrostatic profiles of <i>A. baumannii</i> FtsK _y (A1 and A2) and <i>A. baumannii</i> XerD (B1 and B2)136
Figure 4.6	Hydrophobic profiles of <i>A. baumannii</i> FtsK _Y (A1 and A2) and <i>A. baumannii</i> XerD (B1 and B2)137
Figure 4.7	A. baumannii FtsKy and E. coli XerD docked in silico141
Figure 5.1	Recombination between two <i>dif</i> sites in repeat on a reporter plasmid
Figure 5.2	Single and double restriction digests of pFtsK _Y _AB152
Figure 5.3	<i>In vivo</i> recombination assay of pFX142 in DS9041 cells (ΔFtsKc)

Figure 5.4	In vivo recombination assay of pCDIF_AB in DS9041 cells
	(ΔFtsKc)157
Figure 5.5	<i>In vivo</i> recombination assay of reporter plasmids (A) pFX142 and (B) pCDIF AB in DH5 α D- (Δ XerD) and DH5 α cells 159
Figure 5.6	Plasmid map of pSI-56 and pSI-56 recombination products161
Figure 5.7	Plasmid map of pDIF_INV and pDIF_INV recombination products
Figure 5.8	Restriction digest of pDIF_INV. when digested with EcoRI 164
Figure 5.9	<i>In vivo</i> recombination assays of reporter plasmids (A) pSI-56, (B) pDIF_INV in DH5 α D- (Δ XerD) and DH5 α cells
Figure 5.10	EcoRI restriction digest of reporter plasmid (A) pSI-56 (B) pDIF_INV products from an earlier <i>in vivo</i> recombination assay

Figure 6.1	Whole genome distribution of KOPS-like motifs found on the <i>A</i> .
	baumannii chromosome180
Figure 6.2	Whole genome distribution of KOPS (GGGNAGGG) on the E. coli
	chromosome
Figure 6.3 (A)	Overproduction of A. baumannii FtsKc (~ 55 kDa) in BL21 182
Figure 6.3 (B)	Solubility assessment of <i>A. baumannii</i> FtsKc182
Figure 6.4 (A)	FtsKc Purification by Ni ²⁺ Affinity Chromatography184
Figure 6.4 (B)	FtsKc Purification by Heparin Affinity Chromatography184
Figure 6.5	ATPase assay of <i>A. baumannii</i> FtsKc, with and without substrate
	DNA
Figure 6.6	ATPase assay of A. baumannii FtsKc, with increasing DNA
	concentration (0 – 50 μg /ml)187

Figure 6.7	ATPase assay of <i>A. baumannii</i> FtsKc, from 0 - 15 min	
------------	--	--

Figure 7.1	Single and double restriction digests of recombinant plasmids (A)
	pFtsK _{$\alpha\beta$} _TT and (B) pFtsK _{γ} _TT197
Figure 7.2	Overproduction of <i>T. thermophilus</i> FtsK recombinants (A) FtsK _{$\alpha\beta$}
	in B834 Δ XerD cells, (B) FtsK _y in BL21 cells
Figure 7.3	Solubility and heat purification assessment of <i>T. thermophilus</i> FtsK
	recombinants (A) $FtsK_{\alpha\beta}$ (B) $FtsK_{\gamma}$
Figure 7.4	Ni ²⁺ Affinity Chromatography of <i>T. thermophilus</i> FtsK
	recombinants (A) $FtsK_{\alpha\beta}$ (B) $FtsK_{\gamma}$
Figure 7.5	Ion Exchange Chromatography of <i>T. thermophilus</i> FtsK
	recombinants (A) anion exchange for $FtsK_{\alpha\beta}$ (B) cation exchange
	for FtsK _y 205
Figure 7.6	Size Exclusion Chromatography (SEC) of <i>T. thermophilus</i> $FtsK_{\alpha\beta}$
	under differing conditions
Figure 7.7	Selected Size Exclusion Chromatography (SEC) traces of T.
	thermophilus $FtsK_{\alpha\beta}$ with, or without DNA and ATP209
Figure 7.8	ATPase assay of <i>T. thermophilus</i> $FtsK_{\alpha\beta}$ 212
Figure 7.9	Preliminary crystallography trials of $FtsK_{\alpha\beta}$ and $FtsK_{\gamma}$ using the
	commercial precipitant screens LMB, JCSG, PACT, STRUCTURE
	and MORPHEUS (Molecular Horizons)214
Figure 7.10	Crystallisation growth curve of protein in solution as a function
	of protein concentration and protein solubility222

List of Tables

Table 2.1	List of solutions used in the study, alongside components
	required to produce solutions
Table 2.2	Antibiotic working concentrations used selective bacterial
	growth67
Table 2.3	Bacterial strains from E. coli and T. thermophilus involved in the
	current study68
Table 2.4	Plasmids, and the associated gene/ function, antibiotic resistance,
	and source
Table 2.5	Nucleotide sequence and key features of oligonucleotide primers
Table 2.6 (A)	PCR component concentrations for the amplification of A.
	baumannii FtsK _y 73
Table 2.6 (B)	PCR thermocycling conditions for the amplification of A.
	baumannii FtsK _y 73
Table 2.7 (A)	PCR component concentrations for the screening of pSI-5673
Table 2.7 (B)	PCR thermocycling conditions for the screening of pSI-5673
Table 2.8 (A)	PCR component concentrations for the amplification of <i>T</i> .
	thermophilus $FtsK_{\alpha\beta}$ and $FtsK_{\gamma}$
Table 2.8(B)	PCR thermocycling conditions for the amplification of <i>T</i> .
	<i>thermophilus</i> $FtsK_{\alpha\beta}$ and $FtsK_{\gamma}$
Table 2.9	Overproduction conditions for <i>A. baumannii</i> and <i>T. thermophilus</i>
	recombinants
Table 2.10	ATPase assay conditions for the positive (+ ve) and negative (-ve)
	controls

Table 2.11	ATPase assay conditions with constant concentration of FtsK and
	XerD
Table 2.12	ATPase assay conditions with an increasing concentration of FtsK
	and XerD91
Table 2.13	ATPase assay conditions with a increasing concentration of FtsK,
	and no DNA91
Table 2.14	ATPase assay conditions with a constant concentration of FtsK
	and XerD, and increasing DNA92
Table 2.15	EMSA conditions between A. baumannii XerC and XerD, and
	fluorophore tagged <i>dif</i> site oligonucleotides96
Table 2.16	In vivo recombination assay conditions of plasmid(s) and strains
	used

Table 3.1	Summary of positon and placement of key residues identified
	within XerC _{AB} and XerD _{AB} 107
Table 3.2	DNA sequence alignment of <i>A. baumannii</i> chromosome <i>dif</i> , pS30-
	1 <i>dif</i> (L), and pS30-1 <i>dif</i> (R) recombination sites109

Table 7.1Specific precipitant screen conditions and outcomes from the
preliminary crystallography trials of $FtsK_{\alpha\beta}$ and $FtsK_{\gamma}$216

List of Abbreviations

DNA	deoxyribonucleic acid
AA	amino acid
AAA+	ATPases associated with various cellular activities
ADP	adenosine diphosphate
ADPnP	ATP analog 6'-adenylyl-/3,y-imidodiphosphate
AMR	antimicrobial resistance
ATP	adenosine triphosphate
ATPyS	adenosine 5'-O-(3-thio)triphosphate
BLAST	Basic Local Alignment Search Tool
CRAb	Carbapenem resistant Acinetobacter baumannii
Cryo-EM	cryogenic electron microscopy
dif	deletion induced filamentation region
dsDNA	double stranded DNA
EcFtsKc	E. coli FtsK C-terminal domain
EM	electron microscopy
EMSA	electrophoretic mobility shift assay
FtsK	filamenting temperature sensitive (protein) K
FtsK50C	E. coli FtsK C-terminal domain, with 50 amino acid linker region
FtsKc	FtsK C-terminal domain
FtsKy	FtsK gamma subdomain
FtsK _N	N – terminal domain of FtsK
FtsKαβ	alpha – beta (motor) subdomain of FtsK
GFP	green fluorescent protein

HJ	Holliday junction
HR	homologous recombination
IS	insertion sequence
KOPS	FtsK orienting polar sequence
MCS	Multiple cloning site
MW	Molecular weight
oriC	origin of chromosome replication
PaFtsK c	P. aeruginosa FtsK C-terminal domain
PaFtsKcay	P. aeruginosa FtsK C-termina domain, without gamma subdomain
PaFtsK _{αβ}	P. aerugnisa FtsK C-terminal domain, with alpha and beta subdomains
PCR	polymerase chain reaction
Pi	inorganic phosphate
RI	resistance island
RNA	ribonucleic acid
RS	restriction site
SEC	size exclusion chromatography
ssRNA	single stranded ribonucleic acid
ter	terminus region
Xer	chromosomal encoded recombinase
XerC _{AB}	A. baumannii XerC
XerCEC	E. coli XerC
XerD _{AB}	A. baumannii XerD
XerD _{EC}	E. coli XerD